
Contingency Planning for Planetary Rovers

Richard Dearden, Nicolas Meuleau, t

Sailesh Ramakrishnan_ David Smith

and Rich Washington_

NASA Ames Research Center

Mail stop 269-2

be!offet Field, CA 94035-1000, USA

{dearden, nmeuleau, sailesh,deEsmith, richw}@email.arc.nasa.gov

Abstract

There has been consi:]erable work in AI on planning under uncertainty. But this work

generally assumes an extremely simple model of action that does not consider continuous time

and resources. These assumptions are not reasonable for a Mars rover, which must cope with

uncertainty about the duration of tasks, the power required, the data storage necessary, along
with its position and orientation.

In this paper, we outlice an approach to generating contingency plans when the sources of

uncertainty involve continnous quantities such as time and resources. The approach involves

first constructing a "seed" plan, and then incrementally adding contingent branches to this plan

in order to improve utility. The challenge is to figure out the best places to insert contingency

branches. This requires an estimate of how much utility could be gained by building a contin-

gent branch at any given p_ace in the seed plan. Computing this utility exactly is intractable,

but we outline an approximation method that back propagates utility distributions through a
graph structure similar to t_at of a plan graph.

1 Introduction

_ . -For a Mars rover, daily: operatk n is rife. with uncertainty. There-is inherent uncertainty about the

duration of tasks, the power required, the data storage necessary, position and orientation, and

environmental factors such as soil characteristics, dust on the solar panels, ambient temperature,

etc. For example, in driving frora one location to another, the amount of time required depends on

wheel slippage and sinkage, which varies depending on slope, terrain roughness, and soil charac-

teristics. All of these factors ah:o influence the amount of power that is consumed. The amount

* Research Institute for Advanced Computer Science (RIACS)
t QSS Group Inc.

QSS Group Inc.
§ RIACS

of energy collected by the solar panels during a traverse depends on the length of the traverse, but

also on the angle of the solar panels. This is dictated by the slope and roughness of the terrain.

Since rover operations are often highly constrained by time and power constraints, plans that
do not take this uncertainty into account often fail miserably. In fact, it has been estimated that the

Mars Pathfinder rover spent a substantial amount of its life doing nothing because of either plan

failure or conservative action sequences constructed to avoid any possibility of plan failure. One

way to attack this problem is to do on-board replanning when failures occur. While this capability

is certainly desirable, there are several difficulties with exclusive reliance on this approach:

• Rovers have severely limited computational resources due to power limitations and radiation

hardening requirements. As a result, it is not always feasible to do timely or significant
onboard replanning.

• Many actions are potentially risky and require pre-approval by mission operations personnel.

Because of the cost and difficulty of communication, the rover receives infrequent command
uplinks (typically one per day). As a result, each daily plan must be constructed and checked
for safety well in advance.

• Some contingencies require anticipation; e.g., switching to a backup system may require that
the backup system be warmed up in advance. For time critical operations there is insufficient

time to perform these setup operations once the contingency has occurred, no matter how fast
the planning can be done.

For these reasons, it is sometimes necessary to plan in advance for potential contingencies;

that is, anticipate unexpected outcomes and events and plan for them in advance. In this paper we

will be concerned with ground-based contingency planning for rovers. More precisely, the prob-

lem is to produce a (concurrent) plan with maximal expected utility, given the following domain
information:

• A set of possible goals that may be achievable, each of which has a value or reward associated
with it.

• A set of initial conditions, which may involve uncertainty about continuous quantities like

temperature, energy available, solar flux, and position. This uncertainty is characterized by
probability distributions over the possible values.

• A set of possible actions, each of which is characterized by:

- a set of conditions that must be true before the action can be performed. (These may

include metric temporal constraints and constraints on resource availability.)

. - an uncertain duration characterized by a probability distribution.

- a set of certain and uncertain effects that describe the world following the action. Un-

certain effects on continuous variables are characterized by probability distributions.

Contingency planning is already known to be quite hard both in theory [5] and in practice.

However, there are some characteristics of this domain, which make this planning problem differ-
ent and even more difficult:

Time - actions take differing amounts of time and concurrency is often necessary.

Continuous outcomes - most of the uncertainty is associated with continuous quantities like time
and power. In other words, actions do not have a small number of discrete outcomes.

[. (enerate a seed schedule

/--_/ 2. I, entify most likely failure _ " |
/ [3. C enerate a contingency branch t

Figure 1: The JIC approach.

Problem size - a typical daily plan for a rover will involve on the order of a hundred actions.

As a result of these charact.._ristics, it is not clear how to apply previous approaches to planning

under uncertainty to this problem. In this paper, we outline a much different approach to this

problem. At the top level, the approach involves 1) constructing a "seed" plan, and 2) incrementally

adding contingent branches to this plan in order to improve utility. The challenge is to figure
out the best places to insert contingency branches. In general, this requires an estimate of how

much utility could be gained by building a contingent branch at any given place in the seed plan.

Computing this utility exactly is intractable, but we outline an approximation method that involves

back propagating utility distributions through a graph structure similar to that of a plan graph.

In Section 2 we discuss Just-m-Case Planning, our incremental approach to contingency planning

based on the Just-in-Case Scheduling work of Drummond, et al[3J.We also argue that for planning,

probability of failure is not a good heuristic for choosing branch points. In Section 3 we describe

our plan graph method for e:_timating branch utility curves. In Section 4 we describe how this

information is used in order to 1) choose branch points, 2) guide the planner in selecting goal sets,
and 3) choose the correct branch condition.

2 Just-In-Case Planning

In the classical approach to contingency planning, each time an action with uncertain outcomes is

added to a plan, the planner attempts to establish the goals for each different outcome of the action.

Unless there are only a few discrete sources of uncertainty in a domain, this approach is completely

impractical. For more complex domains, it is critical that the planner focus on those contingencies

that will make a large difference in the overall value of the plan. To do this, we build upon the Just-

In-Case(JIC) scheduling techn ique[3], that was initially developed for contingency scheduling of
automated observatories. The basic idea in the JIC approach is to take a seed schedule, look for

.:the p._!ac_ewhere it_i_s_most ilk_el) to fail, and augment the schedule with a contingent branch at that

point. The process is repeated Until theresulting contingent schedule is sufficiently robust, or until

available time is exhausted. This process is illustrated in Figure 1.

Conceptually, it seems straightforward to apply the JIC approach to planning problems. Using a

conventional planner, we first ge aerate a seed plan assuming the expected behavior of each activity;
in other words, we reason as if every action uses the expected amount of time and resources. This

is the same approach taken in JIC scheduling. As with JIC scheduling, we then choose a place to

insert a contingency branch. On,:e again, using a conventional planner, we generate a plan for the
contingency branch and add it to the existing plan. 1

lIust as with JIC scheduling, this irrocess is not guaranteed to converge to an optimal contingent plan. However,

Power usage P_L._ PL_L

5 15 5 15 Value = 100

I H A2 II G I

Figure 2: Example showing that the place where the plan is most likely to fail may not be the best
branch point.

2.1 The JIC Branch Heuristic

For JIC planning, the tricky part is deciding where to insert contingency branches, and what

the branch conditions should be. In Drummond et al.'s original implementation for automatic

telescope scheduling, branches are added at the points with the greatest probability of failure.

Given the distributions for time and resource usage this is relatively easy to calculate by statistical

simulation of the plan. Unfortunately, the points most likely to fail are not necessarily good points

for contingent branches. Consider the example in Figure 2 where we have a seed plan with two

actions, A1 and A2, leading to a goal G that has positive value. Initially we have 20 units of some

resource (say power) and each of the actions consumes somewhere between 5 and 15 units of the

resource. Clearly, this plan is most likely to fail after (or during) action A2. However, if the plan
fails after (or during) action A2, there will not be any resources left. If all the alternative activities

require some of this resource, then there is clearly no point in putting a contingent branch after A2.

Fundamentally, the problem is that in order to select the best place to insert a branch, we need to

know whether or not it is possible to accomplish anything useful at the points under consideration.

More precisely, we need to know how much utility could be gained by inserting a branch at each

given point. In order to do this, we need to know the value function of the mainline plan and of

each possible branch. The value function gives the expected future reward (utility) at each step of
a plan, as a function of the resource levels.

Computing the value function for a completed plan (such as the seed plan) is relatively straight-

forward. It may be done analytically if the resource consumptions for activities are simple distri-

butions. However, more typically, Monte Carlo simulation is required [1, 6]. Similarly, it is easy to

get an estimate of the probability distribution over resources at each step of a plan. A crucial piece

of information is then the value function of the best branch plan that can be added at each point in
the existing plan, Given this information, we can easily determine the optimal branch point in the

plan. We just have to compare the relative gain in utility obtained by considering the best possible

branch plan at each point and pick the branch point where this gain is maximal. Unfortunately,

there is _no.¢_sy__wa___to calculate. _the value fun.ctiQn for the best_ possibl e bra0_,ch !?1.__at a __ven _
point. It requires actually doing the planning for the branch. Instead we must approximate this

value function. In the next section, we present a procedure designed to estimate the value function

of the best possible branch plan that could be generated at each point, without actually doing the
planning.

JIC will always monotonically improve a plan until a local optimum is reached.

4

3 Estimation of Branch Utility

The main procedure of our algorithm computes an estimate of the value function of the best possi-

ble branch plan, at each p(int of the mainline plan. it is based on a representation of the planning

problem as a graph identical to the plan graph of Blum and Furst's Graphplan [2, 4J. Graphplan

is a classical planning algcrithm that first performs a reachability analysis by constructing a plan

graph, and then performs goal regression within this graph to find a plan. Our approach retains

only the first of these stages, the plan graph construction. We then perform backpropagation of

utility tables in the graph tc produce estimates of utility functions (instead of plans). This section
provides an outline of this mechanism.

3.1 The Plan Graph

The plan graph is a sequential graph that alternates propositional (fluent) levels and action levels.

Each propositional level contains the set of propositions that can be made true at that level, and a

set of mutua! exclusion(mutex) constraints between pairs of these propositions. A mutex between

two fluents indicates that the:_e propositions cannot both be true at the same time at this level of the

graph. 2 The first propositional level contains all the fluents that are true in the initial state of the

problem (initial conditions). Fhe action levels contain all the actions that can be applied given the
previous propositional level. Each action has an arc from each fluent that it consumes and an arc
to each fluent it produces.

Figure 3 shows a part of the plan graph obtained in a simple example where the only continuous

variable is power. In this prcblem, the mainline plan(shown in bold) consists of two actions: A

which takes the fluent p as precondition and produces q and r, and ./3 which has q as precondition

and 9 as effect. The fluent g rcpresents a goal that provides a reward (utility) of 5. For each action,

the expected consumption is i0 Ah, and it can be started only if the current level of resource is

atleast 15 Ah. Three other actions, C, D, and E, are available in the domain, but they are not

included in the mainline plan. The fluent g' represents a secondary goal with utility 1. Finally,
both p and s are true and all Ehe other fluents are false in the initial conditions. There are two

points of the mainline plan that are candidate branch points: at the beginning of the plan, and

between A and B. The latter is characterized by the following set of propositions:p, q, r and s (all

other fluents being false). Our goal is to estimate the best utility gain we can get by branching at
these points.

3.2 Utility Table Backpropagation

The basic principle of our algorithm is to backpropagate utility distribution tables in the plan graph.
Each table is attached to a single (action or proposition) node and contains:

• a condition, that is, a list of fluents such that the table is valid if all the fluents are true.

• a piecewise constant function giving utility as a function of resource level. It represents an

estimate of the expected reward we can get by performing this action, or by having this fluent

true, as a function of current resource levels, if all fluents in the table condition are true.

2Note that the reciprocal is not true: since Graphplan takes into account only binary exclusion constraints, two
fluents that are not mutex in the graph may in fact be unreachable simultaneously.

(2, 2)

(1, 1)

Figure 3: An example of plan graph (partial). The two numbers below each actaon represent, first,
its expected consumption, and second, the minimum power required to be allowed to start this
action.

The process is initialized by creating utility tables for the goals. IJa our example, we start with a

table for 9 with an empty condition, and an expected return of 5 for positive resource levels (and 0

otherwise), indicating that we obtain a reward of 5 if we can get to 9 with some power remaining.
Similarly, 9' has a table with an empty condition and reward 1.

We then backpropagate these tables in the plan graph, until all the tables have reached the initial

conditions. First, a table is created for action B, based on the table in 9. Its condition is set to the

empty set (the condition of the table in 9), and its utility function is defined by:

0 ife < 15 ;VB(e) = Vg(e- 10) otherwise ; (1)

where VB (e) and I,_(e) are the (piecewise constant) utility estimates encoded by the tables in B
and 9 respectively. The first line expresses the fact that we are not allowed to start B if the current

energy is at or below 15 Ah. The second says that/3 consumes 10 Ah and leads to 9, from where

we can get the reward encoded by Vg. A similar table is created for E as shown in Figure 4.

3.3 Conjunctive Preconditions

Since E has two fluents as preconditions, r and t, two copies of its table are created, one for each

fluent node. The value functions encoded by these tables are both equal to the function of the table

for/3 (E (e) = Vt(e) = VB (e)). However, their conditions are different. The condition of the table

for r is {t}, while the condition of the table for t is {r}.

The table in t will be backpropagated through action .D to a table in s.This table=has condition,

{r} and predicts 0 reward if e _< 3 (the consumption of D plus the consumption of E), and 1

otherwise. When this new table is created in s, we need to change its condition from {r} to {p}.
To do this we apply the consumption of action C to the table. The result is a table attached to s

with {p} as condition and predicting 0 reward if e _< 6 (the sum of the consumptions of C, D and

E) and 1 otherwise. Similarly, the table in r with {t} as condition is backpropagated to fluent p
through action C.

We then have two tables, one for p with {s} as condition, and one for s with {p} as condition,

that both encode the same plan: (C, D), then E. However, they represent different orderings of C
and D.

6

s" "-

, t s

'
/

• 2 3

Figure 4. U ility table propagation for conjunctive preconditions

In general, this process may lead to several tables attached to the same node, since there may
be several ways to support a ;luent. The total number of tables is limited by merging all the tables

that have the same condition at some node: they are replaced by a single table that encodes the
maximum of all their value fi_nctions.

3.4 Conjunctive Effects

example, when we want

merged with it. The test

of the table for r, which

The most interesting step of the backpropagation mechanism is illustrated by action A in Figure 5.
Since this action has two effects, it will receive utility tables from both nodes.

Each time a table is backpropagated to A, we merge it with all other tables at A. In our

to backpropagate the table from q, we first test if the table in r can be

is su_'cessful if and only if the condition of the table for q implies that

is nc.t true. Therefore, the test fails and we backpropagate the q table
independently. However, when we consider backpropagating the table for r, the test is successful

(since t ==* true) and we merge the two tables. The table in A inherited from r has condition {t},
and encodes the value function defined by

VA(e) = _ 0 if e<15 ;max {_(e -- 10), V_(e - 10)} otherwise . (2)

The use of the max operator in equation (2) corresponds to a pessimistic view where we assume

that we can never get the rewards of two different goals in the same execution run.

To deal with situations where several goals are reachable, we use a more complex operator that

-- requires augmenting the utility tables. We add: (i) the sum of the expected consumptions of the

actions performed to get the utility encoded by the table, and (ii) the goals that are responsible for

this utility. They both are a function of the resource level e. These are piecewise constant like the
utility function. In the case of action A, we have

0 ife < 15 ;
VA(e) = max {Vq, e - 10) + l_-(e - 10 - Cq(e - 10)), (3)

E(e - 10) + Vq(e - 10 - C_(e - 10))} otherwise .

The first of the two alternatives represents performing A, pursuing the goals beyond q, and then

the goals beyond r. The second a!ternative follows the same reasoning, but pursuing r before q.

_ _~- / _ _-_ _

1/5l

Figure 5: Utility table propagation for conjunctive effects

.... 1:=',- SZ2

'. 6 25,._ ----.

_ ," (1, 1)
_ 6 / /

Figure 6: Extracting utility estimates(using the MAX operator)

The information about the goals pursued is used to avoid counting the same goal twice, which

is a potential flaw of the previous rule. If the goals pursued in the two tables (for a given resource

level) intersect, then we use a simple max rule as in (2). In the case of action A in our example,
the goals in the tables attached to q and r do not intersect, so we use rule (3).

3,5 Extracting Utility Estimates

Once the utility tables have been backpropagated down to the fluenis reprdsenti_ng in-ifial conditions

of the problem, we extract the utility estimates for the candidate branch points from the graph. We

start with the point between A and B, characterized by the set of fluents {p, q, r, s}. We build a

single utility table for this branch point by merging all utility tables attached to p, q, r and s nodes

whose condition is included in {p, q, r, s} (that is, whose condition is true when we are at the point

between A and B). This is all the tables that represent utility apparently reachable when p, q, r and

s are true simultaneously. These tables are merged using a simple max operator as in equation (2)

or the more complex operator of equation (3), depending on the context. The resulting table is the
value function estimate that we need.

Branch Estimate

G3

Mainl_n,e Utility

G4

' Branch Conditions
I

J

Figure 7: Selecting the branch point, branch condition and goals

As shown in Figure 6, th_ calculation for the branch point at the beginning of the mainline plan
uses two tables:

• the table attached to p with {s} as condition and showing that a reward of i may be reach if
15 < e _< 25, and a reward of 5 may be reached ife > 25;

• the table attached to s with {p} as condition and showing a reward of 1 may be obtained if
e > 6 (the sum of the consumptions of C, D and E).

The resulting table, which cl-_aracterizes this branch point, shows that no reward can be obtained

from here if e < 6, that a revcard of 1 is available if 6 < e < 25, and that a reward of 5 may be

obtained if e > 25. Using equation (3) instead of (2), we would also have identified the possibility
of reaching both 9 and 9' if there are sufficient initial resources.

4 Using Utility Estimates

Given the utility estimates at the various branch points, we can now use this information to select

the branch point, the branch ccndition and the set of goals to pursue. For a particular branch point,

we compute the gain in area for the branch utility estimate over the mainline utility. This represents

the net utility gain of the branch. The branch condition is composed of the points where the utility
curves cross. The goals for the contingent branch correspond to the portion of the utility estimate
that is greater than the utility ct_rve of the mainline plan.

For example, in Figure 7, we show the mainline utility curve and the branch estimate curve for

a brahcli point. The Shaded area ret;resents theutility gain for the branch. The branch conditions

are shown and the goal corresponding to the utility gain is G3.
The JIC Planning algorithm is summarized below:

1. Generate a "seed" plan.

2. Find the best branch

(a) Estimate the branch _ttility curves

(b) Compute the net utility gain

(c) Identify the branch c(mditions and associated goals to pursue

3. Generatethecontingencybranch
4. Insertthebranch

5 Conclusions

For a Mars rover, uncertainty is absolutely pervasive in the domain. There is uncertainty in the
duration of many activities, in the amount of power that will be used, in the amount of data stor-

age that will be required, and in the location and orientation of the rover. Unfortunately, current

techniques for planning under uncertainty are limited to simple models of time, and actions with

discrete outcomes. In the rover domain there are concurrent actions, actions of differing duration,

and much of the uncertainty is associated with continuous quantities like time, power, position and
orientation.

For any non-trivial problem, it seems unlikely that exact or optimal solutions will be possible.

In this paper, we have outlined an incremental technique for building up contingent plans. It uses

a novel method for estimating the utility of possible branches. We are currently implementing
this algorithm for the Mars Smart Lander Technology Demonstration Effort using the EUROPA
planning system to generate seed and branch plans.

,References

[1J D.R Bertsekas and J.N. Tsitsiklis. Neuro-dynamic Programming. Athena, Belmont, MA,
1996.

[2] A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial Intelligence,
90:281-300, 1997.

[3J M. Drummond, J. Bresina, and K. Swanson. Just-In-Case scheduling. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 1098-1104, 1994.

[4] S. Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and other CSP

search techniques in Graphplan. Journal of AI Research, 12:1-34, 2000.

[5] M. Littman, J. Goldsmith, and M. Mundhenk. The computational complexity of probabilistic
planning. Journal ofAI Research, 9:1-36, 1998.

[6J R.S. Sutton and A.G. Barto. ReinforcementLearning..Anintroduction. M-IT Press] Carhbridge,
MA, 1998.

10

